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Abstract—An analytical tool for buckling and vibration analysis of laminated shallow curved panels
is presented. The equations in terms of transverse displacement and Airy stress function are derived
via the Hu-Washizu mixed formulation and solved by the Ritz method. using the eigenfunctions
of an isotropic beam. The eflect of the prebuckling state and out-of-plane natural boundary
condttions is examined. The approximate reduced bending stiffness method is evaluated for cross-
ply and angle-ply laminates.

INTRODUCTION

High-performance composite materials are in extensive use in laminated thin walled struc-
tures subjected to compression as well as to tension. Consequently, both relevant modes of
behavior —-buckling and vibration—have to be considered. These modes are in fact a routine
source of insight into the response of these structures, with its vital safety aspect, especially
in the case of curved pancls. Thus, improved behavior prediction accuracy is essential for
reliable design.

Many research works on buckling and vibration analysis of various types of structures
have been reported in the literature. Extensive reviews by Leissa (1978, 1985) and by Bert
(1979. 1982) indicate that most of the rescarch has been confined to flat pancls, while very
few works have dealt with cylindrical panel behavior, the latter being both theoretical
(Crawley, 1979 ; Zhany and Matthews, 1983 ; Whitney, 1983 ; Baharlou, 1985; Tennyson,
1986) and experimental (Wilkins, 1975; Becker er al., 1982; Bauld and Khot, 1982;
Kobayushi er af., 1986). Since curved panels are characterized by a limit point rather than
by u bifurcation point, many of the works are concerned with the postbuckling behavior
[sce Sheinman and Frostig (1990)].

One of the most important parameters of composite laminated structures is the stretch-
ing-bending coupling effect, research work in which has been reviewed by Kicher and
Muandell (1971) for flat panels. The pioneer work in this context was that of Reissner and
Stavsky (1961), followed by that of Whitney and Leissa (1969) for cross-ply and angle-ply
laminates and also that of Chamis (1969). Ashton (1969) proposed an approximate solution
method called RBS (Reduced Bending Stiffness), based on the decoupling of the stress
function and the transverse displacements in the potential energy.

The aim of the present work is to develop an analytical tool for buckling and vibration
frequencies for further investigating the approximate RBS method and to study the effect
of curvature on this method. Another important parameter which is usually neglected is
the prebuckling state. The present work deals with the effect of the prebuckling state
(assuming out-of-plane prebuckling displacement due to compliance with the natural
boundary conditions and nonconstant stress behavior during buckling) on the buckling
and vibration-buckling interaction curves.

The panel may consist of curvatures in the two principal directions, longitudinal and
lateral (see Fig. 1). The analysis uses the Von Karman kinematic approach and the classical
elastic laminate principles. The equations, in terms of transverse displacement and the Airy
stress function, are derived via the Hu-Washizu mixed formulation of the potential energy.
The solution procedure is based on the Ritz method for which the dependent variables are
separated into the eigenfunctions of an isotropic beam. Lagrange multipliers are introduced
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Fig. [. Geometry.

to the potential energy to satisfy the natural out-of-plane boundary conditions. Examples
of cross-ply and angle-ply laminates are used for illustration.

ANALYTICAL FORMULATION

Consider a composite shallow curved panel consisting of homogencous orthotropic
layers of arbitrary onentation and combination, with total thickness 1. Let {x. 3) be the
pancl coordinates of the reference surface, = the normal coordinate, R, and R, the radii of
curvature in the x- and y-directions (Fig. 1). Recourse to the Kirchhoff-Love hypothesis
leaves only three dependent variables, namely the displacements v, v, w in the x-, y- and :z-
directions, respectively. Resorting to the Von Karman kinematic approach, the strain-
displacement relation can be written as:
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( ).and ( ), denote the derivatives with respect to v and y, respectively.

Under the classical laminate theory, the strain {£} and the bending moment {AM}
(M .M, M,) vectors can be expressed in terms of the Airy stress function {F}
(UF,  Fooo—F o} = (NN NLY and curvature [y} vectors as [see Sheinman and

Frostig (1988)]:

(&} = [@{F} =[x}
{M} = [p]"{F}+[dl{x} (3)

where



A study of laminated shallow curved panels 1331

a=A""', b=A"'B, d=D-BA"'B

(A, B, D,,):JtQ,](l = z3yd-, 4

A,;. B, and D, being, respectively, the membrane, coupling and flexural rigidities, and Q,,
the laminate transformation reduced stiffnesses.

The governing equations in terms of the transverse displacement {w) and the Airy
stress function {F) are derived via the Hu-Washizu mixed formulation of the potential
energy :

n =J' j {%(“{F}T[ﬂ]{FHZ{F}T[hI{x}+{X}T[d]{x}
FF Wi F oW —2F wow, +2F, o +2F, — | —quidxdy (5)
R ~Rr )1

where ¢ is the external applied normal load.

This mixed expression [the one given by Ashton (1969) is incorrect] includes coupling
of the Alry stress vector {F} and the change of curvature vector {g}. Variation of n yields
the exact equilibrium and compatibility equations [sce Sheinman and Frostig (1990)].

Employing the perturbation technique

wo= w4 it

F=F®4iF" (6)
yields the following expression for the potential energy :
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N... N, and N, are the in-plane external loads in the x- and y-directions and the external
in-plane shear loadinq respectively, applied at the boundaries. The prebuckling and buckling
equauons are derived by setting on'" = 0 and dn'? = 0 respectively. The tracer parameters
E,and £, (with values 0 or 1) represent the following situations:

(1) <, =0 constant inplane internal forces.
(i) <, = I the general Atry function depends on the pzmd coordinate system,
0 s

(iit) &, = 0 the assumption that the prebuckling response is pure membrane (w'” = ().

By introducing the kinematic energy

1 )
T= ,)J-J‘pw_; dydy (it

X

the vibration domain is included.
w'™ and F*™ which arc obtained from the prebuckling state, are governed by the
external loading, boundary conditions and rudii of curvature.

Solution procedure
The displacement and Airy stress functions assume the following form:

LT 1Y

“‘(,'C. ¥ {) = g™ Z Z “’mnsm{'r){n(}‘)

”m "
mf onf

Fx, 3 ) =€ Y Y frnm()ra(3), (12)

w being the free vibration frequency, mw, nw, mf and af the number of terms in the
truncated series for w and F, respectively. The displacement functions s,,(x), £,( ) have to
satisfy the geometric boundary conditions, the stress functions g,,(x). r,( 1) taking the form
of a clamped -clamped isotropic beam mode and satisfying the in-plane force conditions at
the boundarics. The most commonly used s(x), ¢(y), g{x). r(y) arc derived either from the
beam vibration mode:

() =Cysinf,( )+Crcos f,( )+ Cysinh B,( )+ Cycosh f5,() (13)
or from the column buckling mode:
d()=Cisinf( )+Crcos B, )+ Ci+Cal ). (14
The coeflicients C, are determined through the end conditions, while the terms fi,, arc
cigenvalues obtained from the characteristic equations {see Sheinman ef al. (1991)].
Compliance with the out-of-plane natural boundary conditions is provided by recourse

to the Lagrange multipliers and inclusion of the following expression in the potential
cnergy:
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&y again being a tracer (0 or 1) representing compliance with the natural out-of-plane
boundary conditions for the buckling and frequency of the panel,

Substituting the isotropic-beam eigenmodes [eqn (13) or (14}] in the displacement and
Airy functions, integrating in both the x- and y-directions (with the aid of a symbeolic
compiler) and applying the variational principle on n'*, we obtain the following matrix

equation:
Ky | K. , Gy : f
------- Y NN BN S R = o}
{E&t , f\} AEG,T“ : Gm;] ¢ E L M, w 0} (16)

This equation is an cigenvalue problem for which A represents the buckling load parameter
and e the free vibration frequency. The effect of the prebuckling state on the frequency
under a given loading, can be also treated through this equation. K is the matrix (mixed
stiffness and tlexibility, nonpositive definite) derived via dn, = 0; Kyconsists of the in-plane
coetlicients ,,, K,,,, of the flexural coefficients o, and K, of the coupling coefficients b,;; K,
contains also terms due to the curvature. The RBS method consists in setting b,; = 0 in the
K, matrix—cquivalent to omission of the coupling terms [b]{ £} in the equilibrium equation
and [p}ix} in the compatibility ones. G is the so-called geometric matrix derived from

dna. = 0 G,, contains the prebuckling transverse displacement wi®, and G,. the pre-

buckling Airy function £, which is usually not considered [see for example Baharlou and
Leissa (1987)]. Since the mass matrix M is defined only for the w terms, the effect of the b,
coeflicients in the K, matrix is insignificant in frequency analysis, which enhanced the
popularity of the RBS method. By contrast, in buckling analysis, where G, does not vanish,
the cifect of the b, terms may be pronounced. Gy, is mainly affected by the prebuckling
transverse displucement w'™, hence the procedure sets out from the prebuckling state

K”. K,w f(U)
[:K’l' K. v]{“'(())} = {p} (17)

where {p} contains the external applied load as well as the natural out-of-plane boundary
condition due to dms. Thus, the w'™ and /' vectors are obtained from eqn (17) and
substituted in the geometric matrix G.

Numerical resulty and discussion

The procedure outlined in the preceding section is used to study the effect of some
purameters on buckling and vibration of laminated curved panels in the context of the RBS
{Reduced Bending Stiffness) method. For this purpose, a rectangular simply-supported
curved panel was taken with data as follows [see Sheinman and Frostig (1990)]: 2-ply
carbon cpoxy laminate with £, = 2.07-10"' Nm~% E,; =52-10°Nm~%, G|, = 2.7-10°
Nm~? v, =025, thickness & = 2.5 mm, length @ = 0.25 m, width b = 0.25 m and mass
density p = 1600 kgm ’. Two well-known layup cases (a) cross-ply and (b) angle-ply were
considered as illustrations,

(a) Cross-ply laminate. For the cross-ply laminate, the difference between the approxi-
mate RBS solution and its complete counterpart increases with the aspect ratio of the panel
[sce Whitney and Leissa (1969), Kicher and Mandell (1971)] and is very small for a
rectangular panel. However, cross-ply laminates are not symmetric with respect to the
middle surface and the contribution of fiber orientation in the outer and inner layers must
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Fig. 2. Axial buckling load of cross-ply laminuate versus radius of curvature,

be taken into account when studying the effect of curvature. To this end, the buckling load
of cross-ply laminates with (90.0) and (0,90) layups, under axial compression was cxamined
for several values of curvature. The nondimensional results are plotted against the curvature
parameter in Fig. 2 and listed in Table I. The present analysis yielded a significant ditference
between the two fayup variants. This difference is lurgely attributable to the ¢, parameter
{see Table 1), which is introduced in order to satisfy the out-of-plane natural boundary
conditions, and at the value £, = | yields a2 nonmembrane prebuckling behavior. The small
difference observed in the earlier study by Buharlou (1985), is obviously due to disregard

Table 1. Buckling load of curved cross-ply luminate panel with simply-supported boundury conditions

N BUEGR

Present analysis COSMOS7
Baharlou Lashkari
/R, Layup =0 o=0 §=35.=0 (=0 RBS Complete (1985) (1984)
0 900 13.33 12.67 12.66 12,65 13.32 13.34 12.63 13.49
0,90 13.33 12.88 {2.66 12,65 {3.32 13.34 12.63 1349
0.1 90,0 20.20 17.37 15.91 15.90 2263 22.67 17.51 16.09
0,90 13.98 14.68 15.82 15.90 12.98 12,99 17.49 16.12
0.143 90,0 2497 21.32 19.27 19.24 2848 28.53 2238
0/90 16.41 [7.54 19.23 19.24 15.13 15.12 19.48
0.2 90,0 32.69 24.26 25.49 2545 37.12 37.20 32.06 27.72
0/90 21.45 23.10 25.05 2543 19.71 19.74 3247 2588
0.3 90:0 49.65 44.57 40.81 30.65 54.72 54.93 5628 47.10
0,90 34.76 37.22 39.58 40.61 3243 32.27 56.62 42.06
0.33 90,0 54.94 51.01 46.98 36.76 61.27 61.56 54.70
0/90 40.31 42.97 1548 46.70 37.77 37.55 48.71
0.4 90,0 70.3t 65.16 60.69 60.31 73.84 75.87 73.67 69.35
0/90 52.87 55.82 58.36 60.23 48.52 49.58 73.64 63.57
0.5 90,0 79.67 80.83 73.52 73.49 $8.19 8811 85.76 89.16

0/90 67.16 67.02 71.73 7347 63.06 62.97 85.74 74.76
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Fig. 3. Load-frequency interaction curves for cross-ply laminate.

of this effect, as well as to his usce of a constant prebuckling Airy function, ic. &, = &, = 0.
As for the slightly larger but still moderate difference obtained by using COSMOST7 code
(Lashkari, 1984) it is attributable to the limitation of the classical general purposc fintte
element code in satisfying the natural out-of-plane boundary conditions.

The effect of the usually unconsidered &, and &, parameters is shown by Table | to be
quite pronounced ; they yield a stiffer behavior for (90,0) layup and a more flexible one for
(0,90). For the cross-ply with aspect ratio 1, the RBS results (obtained by setting b, = 0 in
the K, matrix) are seen to be in very good agreement with the complete analysis.

Vibration analysis was also carried out for this case and the results are summarized in
Fig. 3 (w, is the frequency of the unloaded curved panel, @ the frequency of the loaded
panel under axial compression N, N¥, the buckling load of layup (90,0)). Here, again, a
farge difference is observed between (90.0) and (0,90).

{b) Angle-ply laminate. A comparison between the complete and the RBS analyses was
carried out for buckling and vibration response. The laminate parameter b, ,—2b,, [sce
Reissner and Stavsky (1961)] comes into play in the RBS method. Its effect is mostly
pronounced under inplane shear loading. The shear buckling load versus the angle-ply
layup (+0) is plotted in Fig. 4 for radii of curvature R, = 0.5 m and R, = 2.5 m. With the
laminate parameter not taken into account in the RBS analysis, the error introduced is
minimal near +45° and maximal near 07 and 90°. It 15 scen that the RBS method s
curvature-sensitive, yielding a more flexible behavior for R, = 0.5 m and suffer behavior
for R, = 2.5 m. The interaction curves of the frequencies with the in-plane shear loading
are givenin Figs 5-7for 8 = +15°, 0 = +30 and 8 = £ 75" respectively, w, denoting the
frequency of the unloaded panet and ¥, the shear buckling load obtained from the complete
analysis. For an unloaded panel, the RBS method yiclds very good agreement with the
complete analysis: the higher the shear load level, the larger the error—again due to the
prebuckling state which is not taken into consideration [through eqn (17)] in the RBS
analysis.

CONCLUSIONS

The Hu-Washizu mixed formulation for the potential energy is used in buckling and
vibration analyses of an arbitrary curved laminated panel. The equations are expressed in
terms of the transverse displacement and the Airy stress function. The solution procedure
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Fig. 5. Load frequency interaction curves for angle-ply # = + 15

is based on separation of the panel variables, using the eigenfunctions of an isotropic beam
in both the longitudinal and lateral directions.

The paper compares a complete analysis, covering the prebuckling state, with the
approximate RBS method. It was found that, in contrast to unloaded vibration response,
the buckling behavior is strongly affected by the nonmembrane prebuckling stresses.

Comptliance with the natural out-of-plane boundary conditions in the curved pancl
makes for a large difference between the (90.0) and (0,90) layups. In addition, assumption
of a nonconstant Airy stress function during buckling, yiclds much more accurate results.
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Fig. 7. Load -frequency interaction curves for angle-ply 0 = £75°.

The approximate RBS method is curvature sensitive and, as in the case of a flat plate,
depends on the laminate parameter (bg—-2b,,).
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